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In this lab, motion of objects on earth is closely analyzed. Software such as Logger Pro is
used to extract data on an object’s trajectory from sources such as video files. Various models are
used and compared for their effectiveness and limitations when describing motion of objects,
namely projectiles and pendulums.

1 Introduction

In modern physics, digital devices are used to
collect large amounts of data describing
physical interactions. While more information
is often seen as resulting in more meaningful
conclusions, the cost is the effort of sifting
through this data to extract only what is
needed and to interpret the large amount of
data correctly.

As of writing, over a year ago was when
the first image of a black hole was constructed.
An enormous amount of data was collected
using sensors and computers for storage, but
the data itself was not enough to trivially
produce an image of what it would look like to
the human eye. It took extensive research and
use of advanced physical models to interpret the
data in order to produce that viral first image
of a black hole. Even this first interpretation
had room for improvement; months after the
first image was released, scientists reinterpreted
the same data to produce an even more
accurate depiction of the same black hole. The
interpretation relied heavily on the model of
the physics at hand. If the model was incorrect,
so would have been the final image.

This lab covers analysis of interactions
more earthly than black holes. Videos of a
hammer being thrown and a toy skydiver being
dropped are observed, as well as numerical data
from swinging pendulums. The data is
processed and analyzed using simplified
Newtonian models in order to make meaningful
observations about the objects and the
environment.

2 Raw Data

Video files are rich in information, but a video
of an object in motion does not explicitly
provide data about the motion itself. Motion
tracking software was used to trace the location
of objects shown in the video and provide
numerical data about the objects’ positions over
time.

Two videos were analyzed: a thrown
hammer, and a falling toy parachute. Each
video was taken such that the motion happens
squarely within the plane perpendicular to the
camera’s central viewing direction. In the
hammer video, the center of mass of the
hammer is known and identified, and the
hammer spins as it traces a visible parabolic
arc through the air. In the parachute video, the
toy is dropped from a height while the chute is
not open. As the toy falls, the parachute begins
to open, until it maintains a virtually constant
state of openness during the rest of the fall. In
both videos, a meter stick is in shot,
approximately in the same plane as the object
motion.

Figure 1: Diagram of hammer’s motion
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Figure 2: Diagram of toy’s motion

Information about the motion of two
pendulums was also provided. A table of the
angle at different times was given for a
pendulum of small angles and a pendulum of
relatively larger angles. As this data is already
in numerical form, it need not have been
processed in the way that the video data was.

3 Data Extraction
The Logger Pro software is capable of
performing motion tracking, but the open
source motion tracking software Blender 3D
was used in this case. For the hammer, the
center of mass was known to be the center
point at which the head and handle meet; this
point was tracked throughout the video, as well
as another point at the end of the handle. For
the parachute, the bottom of the toy was
tracked during its fall. The data outputted was
a list coordinates in pixels of the tracked points
at each given frame.

A meter stick was present in each video;
the number of pixel lengths between each end
of the stick was calculated and used to convert
the pixel coordinates into units of meters. The
frame rate of each video was known to be
29.97Hz , which was used as a conversion
factor from frame number to length of time

elapsed in seconds.
From these procedures, a dataset was

obtained that was able to list metric locations
of each object at different instances in time.

Figure 3: Hammer center of mass position
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Figure 4: Hammer handle end position
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Figure 5: Toy parachute height over time
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The horizontal position of the toy
parachute over time was recorded, but the
change was very insignificant. The motion of
the toy was almost entirely vertical.
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4 Data Analysis
4.1 Hammer
Projectile motion in a uniform gravitational
field and no air resistance is known to result in
a parabolic arc, where horizontal movement is
of constant velocity and vertical movement is
under constant acceleration. While the hammer
was thrown on Earth in a spherical and slightly
uneven gravitational field with air resistance
present, the movement domain is small enough
to approximate the gravity as uniform, and the
object was small and heavy enough to make air
resistance somewhat negligible.

A quadratic regression over the vertical
location of the hammer’s center of mass with
respect to time was performed with the form of
y = −1

2 gt2 + v0t+ y0. The following coefficients
were created with a 96.875% confidence
interval.

Coeff. Value Error
g 9.9990470m/s2 ±0.0799659m/s2

v0 4.6490049m/s ±0.0371797m/s
y0 0.1996834m ±0.0099750m

The standard error of this regression is
0.0008784m .

The error of all coefficients here is
determined only based on the uncertainty of
the regression; the error in the measurements is
not accounted for. One possible reason for the
value of g differing from the commonly known
9.81m/s2 is that the meter stick was some
distance behind the hammer, making it seem
like the hammer traveled farther in less time
and also accelerated faster.

The same process was done with the
horizontal component of movement of the
hammer’s center of mass. Because our model
neglects horizontal acceleration, a linear
regression was used. Again, confidence intervals
used in this paper are with a confidence level of
96.875% (equal to 1− 1/32).

Coeff. Value Error
v0 2.8913150m/s ±0.0104441m/s
x0 0.3481827m ±0.0047782m

The standard error of this regression is
0.0000215m .

To test if these regressions are good
models of the movement, the residual plots for
each are shown.

Figure 6: Vertical position regression residual
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Figure 7: Horizontal position regression residual
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The residual plots seem to trace out
patterns, indicating that the quadratic and
linear regressions used do not tell the full story.
The horizontal residual decreasing towards the
end could be a result of air resistance making
the traveled distance progressively less as the
resistive force has more time to act. It is also
possible that the true position of the center of
mass of the hammer was actually slightly off
from where we tracked, resulting in a spinning
acceleration in the data.

To gain extra insight, the endpoint of the
hammer’s handle was tracked. The motion of
the handle from a global frame of reference is
complicated, so shown is the graph of the
position of the handle relative to the tracked
center.
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Figure 8: Handle relative to center

relative
x position

relative
y position

0.4m

0.4m

−0.4m

−0.4m

Since the graph overlaps itself, the points
that happened in the latter half of the
trajectory are unfilled for clarity.

The points on this graph are
approximately evenly spaced, suggesting that,
relative to the center of mass, the end of the
handle undergoes uniform circular motion.

4.2 Toy Parachute

The hammer from the previous section was
heavy and small enough to make air resistance’s
effect on it very small. The toy parachute,
however, is light and has a large area, making
air resistance’s effects on it very noticeable.

Objects undergoing air resistance and an
other constant force tend to accelerate at a
decreasing rate, approaching a constant velocity
over time. This is apparent in the data by
applying a linear regression over the latter half
of the data.

Figure 9: Parachute height with regression line
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The line was of equation y = −v0t+ y0.
Here are the values of the coefficients:

Coeff. Value Error
v0 4.4458112m/s ±0.0404143m/s
y0 4.6206172m ±0.0315577m

The value of v0 here represents the constant
velocity that the toy moves under air
resistance, the terminal velocity.

The y0 value here does not represent the
initial height of the toy; it instead represents
the height that it would’ve been if the entire fall
was of constant velocity, respecting the second
half of the data and neglecting the first half.

However, because the motion starts slowly
and the parachute needs time to open, the
motion begins with roughly constant
acceleration, apparent in the data by applying a
linear regression over the velocity over time
with the first half of the data.

Figure 10: Parachute velocity w/ regression line
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The first point was caught when the
parachute was still being dropped, and was
neglected in the regression.
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The line was of equation v = gt+ v0. Here
are the values of the coefficients:

Coeff. Value Error
g 9.2923158m/s2 ±0.4022483m/s2

v0 −0.4082234m/s ±0.1065314m/s

The value of g is somewhat close to the
value of gravitational acceleration, but is still
off considering the error range not including
9.81m/s2 . The value of g predicted is lower
than it should be, which is possibly a result of
the drag being slightly present even in the
selected range.

4.3 Pendulum of Small Amplitude

The motion of the pendulum was provided in
the form of a table with the angle at different
times. Here is a graph:

Figure 11: Small Pendulum Angle Over Time
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If this pendulum is modeled as a
frictionless oscillator, it is described by a
sinusoidal equation.

θ(t) = A sin(ωt+ ϕ)

A least squared regression solver was used to
find values that satisfy this equation. Here are
the results:

Value Symbol Value
Amplitude A −0.3463644

Angular Frequency ω 5.2003203Hz
Offset ϕ 0.5184781

Due to limitations with using a numerical
solver, the error of each value cannot be found,
but the total standard error of the
approximation is 0.0006966 radians. Here is a
residual graph:

Figure 12: Small Pendulum Undamped Res.
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While the residual plot is chaotic, it is
shifted down. This implies that the pendulum
in fact oscillates off center from what is
considered θ = 0. The rest was performed again
using a shifted equation.

θ(t) = A sin(ωt+ ϕ) + s

Here are the new numbers:

Value Symbol Value
Amplitude A −0.3457983

Angular Frequency ω 5.1998443Hz
Offset ϕ 0.5207339
Shift s −0.0081575

The standard error of this approximation is
0.0003841 radians, better than the previous
model that didn’t incorporate shift. The
residual plot is almost the same, but instead
centered around 0.

The sinusoidal model is good in this case,
but in reality, pendulums decay in amplitude
over time. An equation can reflect this decay:

θ(t) = A exp(−αt) sin(ωt+ ϕ) + s

Using the solver, the following values were
returned:
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Value Symbol Value
Amplitude A −0.3510799

Angular Frequency ω 5.1997997Hz
Offset ϕ 0.5206716
Shift s −0.0082146

Dampening α 0.0030033Hz

The standard error is 0.00035179 radians, only
marginally smaller than the 0.0003841 seen
before. Notably, the amplitude in the decaying
model is higher than the amplitude in the
undamped model; this makes sense, because the
undamped model must be set lower to
compensate for the overall lower amplitude,
while the damped model can have a high
amplitude value, while the exponential factor
will handle the decreasing nature of the
observed amplitude.

Here is the residual plot for the damped
model:

Figure 13: Small Pendulum Damped Residuals

time

12 s

residual(radians)

0.015

0.015

The residual plot is sufficiently chaotic,
suggesting that the damped model is a good
depiction of the data.

An additional method of demonstrating
the movement’s likeness to sinusoidal motion is
to perform a Fourier Transform. Logger Pro
was used to perform this transform to produce
this graph:

Figure 14: Small Pendulum Fourier Transform

The Fourier Transform, in a loose sense,
changes the graph of angle over time into a
graph of amplitude over frequency, illustrating
the extent to which each frequency makes up
the total movement. The fact that most of the
area of the graph is located at one point is
reassuring, implying that the motion is pretty
much consistent of one single frequency, making
it a near perfect sine wave.

4.4 Pendulum of Large Amplitude
The same procedure as above was done for a
pendulum of relatively larger amplitude. Here
is the graph of its motion:

Figure 15: Large Pendulum Angle Over Time
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Using the undamped model
θ(t) = A sin(ωt+ ϕ) + s, here are the values:

Value Symbol Value
Amplitude A −2.3332762

Angular Frequency ω −3.5477394Hz
Offset ϕ 1.9993896
Shift s 0.0150121
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The standard error is 0.01561118 radians,
which is significantly worse than for the small
pendulum. The residual plot gives insight into
why.

Figure 16: Large Pendulum Undamped Residual
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The residuals trace out a clear path,
indicating that the motion is in fact not very
sinusoidal in nature. The process was repeated
even with damped oscillation in mind:

θ(t) = A exp(−αt) sin(ωt+ ϕ) + s

Value Symbol Value
Amplitude A −2.4482355

Angular Frequency ω −3.5465201Hz
Offset ϕ 1.9929790
Shift s 0.0096747

Dampening α 0.0185819

The standard error is still not great at
0.0152454 radians. In the residual plot, a very
similar pattern is seen.

Figure 17: Large Pendulum Damped Residual
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The best conclusion from this analysis is
that the motion relatively not close to being a

sine wave. For further confirmation of this,
another Fourier Transform was performed with
Logger Pro on this data, similar to as was done
with the small pendulum.

Figure 18: Large Pendulum Fourier Transform

More than one peak is apparent, and these
peaks are not as narrow as the peaks of the
smaller pendulum’s graph. This suggests that
the motion is not sinusoidal, and in fact can be
approximated better with two sine waves, but
not perfectly without a different type of model
entirely.

5 Conclusion
After analyzing the data here, most of it was
somewhat well described by simple Newtonian
models. Projectile motion was approximated
with constant acceleration, and turned out to
yield a good representation of the motion. The
parachute with great air resistance
demonstrated both quadratic and linear motion
during different time intervals. The small
amplitude pendulum demonstrated sinusoidal
motion quite well. However, the pendulum of
large amplitude did not fall cleanly into a
sinusoidal approximation. The models used
here largely did well, except not in all
circumstances.

The data was analyzed from different
angles; the pendulums were analyzed with
sinusoidal regression and Fourier Transforms,
yielding two complementary perspectives that
each gave insight into the nature of the motion.

7


